Cargando…
Cell type–specific interpretation of noncoding variants using deep learning–based methods
Interpretation of noncoding genomic variants is one of the most important challenges in human genetics. Machine learning methods have emerged recently as a powerful tool to solve this problem. State-of-the-art approaches allow prediction of transcriptional and epigenetic effects caused by noncoding...
Autores principales: | Sindeeva, Maria, Chekanov, Nikolay, Avetisian, Manvel, Shashkova, Tatiana I, Baranov, Nikita, Malkin, Elian, Lapin, Alexander, Kardymon, Olga, Fishman, Veniamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041527/ https://www.ncbi.nlm.nih.gov/pubmed/36971292 http://dx.doi.org/10.1093/gigascience/giad015 |
Ejemplares similares
-
PROSTATA: a framework for protein stability assessment using transformers
por: Umerenkov, Dmitriy, et al.
Publicado: (2023) -
Annotation of uORFs in the OMIM genes allows to reveal pathogenic variants in 5′UTRs
por: Filatova, Alexandra, et al.
Publicado: (2023) -
SEMA: Antigen B-cell conformational epitope prediction using deep transfer learning
por: Shashkova, Tatiana I., et al.
Publicado: (2022) -
Deep learning approaches for noncoding variant prioritization in neurodegenerative diseases
por: Lan, Alexander Y., et al.
Publicado: (2022) -
Predicting Genome Architecture: Challenges and Solutions
por: Belokopytova, Polina, et al.
Publicado: (2021)