Cargando…
Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule
[Image: see text] The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine–anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples the donor and acceptor units, yiel...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041610/ https://www.ncbi.nlm.nih.gov/pubmed/36897796 http://dx.doi.org/10.1021/acs.jpclett.2c03925 |
_version_ | 1784912758303621120 |
---|---|
author | Franca, Larissa G. Danos, Andrew Monkman, Andrew |
author_facet | Franca, Larissa G. Danos, Andrew Monkman, Andrew |
author_sort | Franca, Larissa G. |
collection | PubMed |
description | [Image: see text] The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine–anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples the donor and acceptor units, yielding photophysics, which includes (dual) phosphorescence and the molecular charge transfer (CT) states giving rise to TADF, that are dependent upon the excitation wavelength. The molecular singlet CT state can be directly excited, and we propose that supposed “spiro-conjugation” between acridine and anthracenone is more accurately an example of intramolecular through-space charge transfer. In addition, we show that the lowest local and CT triplet states are highly dependent upon spontaneous polarization of the environment, leading to energy reorganization of the triplet states, with the CT triplet becoming lowest in energy, profoundly affecting phosphorescence and TADF, as evident by a (thermally controlled) competition between reverse intersystem crossing and reverse internal conversion, i.e., dual delayed fluorescence (DF) mechanisms. |
format | Online Article Text |
id | pubmed-10041610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100416102023-03-28 Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule Franca, Larissa G. Danos, Andrew Monkman, Andrew J Phys Chem Lett [Image: see text] The molecular photophysics in the thermally activated delayed fluorescence (TADF) spiro-acridine–anthracenone compound, ACRSA, is dominated by the rigid orthogonal spirocarbon bridging bond between the donor and acceptor. This critically decouples the donor and acceptor units, yielding photophysics, which includes (dual) phosphorescence and the molecular charge transfer (CT) states giving rise to TADF, that are dependent upon the excitation wavelength. The molecular singlet CT state can be directly excited, and we propose that supposed “spiro-conjugation” between acridine and anthracenone is more accurately an example of intramolecular through-space charge transfer. In addition, we show that the lowest local and CT triplet states are highly dependent upon spontaneous polarization of the environment, leading to energy reorganization of the triplet states, with the CT triplet becoming lowest in energy, profoundly affecting phosphorescence and TADF, as evident by a (thermally controlled) competition between reverse intersystem crossing and reverse internal conversion, i.e., dual delayed fluorescence (DF) mechanisms. American Chemical Society 2023-03-10 /pmc/articles/PMC10041610/ /pubmed/36897796 http://dx.doi.org/10.1021/acs.jpclett.2c03925 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Franca, Larissa G. Danos, Andrew Monkman, Andrew Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule |
title | Donor, Acceptor,
and Molecular Charge Transfer Emission
All in One Molecule |
title_full | Donor, Acceptor,
and Molecular Charge Transfer Emission
All in One Molecule |
title_fullStr | Donor, Acceptor,
and Molecular Charge Transfer Emission
All in One Molecule |
title_full_unstemmed | Donor, Acceptor,
and Molecular Charge Transfer Emission
All in One Molecule |
title_short | Donor, Acceptor,
and Molecular Charge Transfer Emission
All in One Molecule |
title_sort | donor, acceptor,
and molecular charge transfer emission
all in one molecule |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041610/ https://www.ncbi.nlm.nih.gov/pubmed/36897796 http://dx.doi.org/10.1021/acs.jpclett.2c03925 |
work_keys_str_mv | AT francalarissag donoracceptorandmolecularchargetransferemissionallinonemolecule AT danosandrew donoracceptorandmolecularchargetransferemissionallinonemolecule AT monkmanandrew donoracceptorandmolecularchargetransferemissionallinonemolecule |