Cargando…
Spin Selectivity Damage Dependence of Adsorption of dsDNA on Ferromagnets
[Image: see text] The adsorption of oxidatively damaged DNA onto ferromagnetic substrates was investigated. Both confocal fluorescence microscopy and quartz crystal microbalance methods show that the adsorption rate and the coverage depend on the magnetization direction of the substrate and the posi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041612/ https://www.ncbi.nlm.nih.gov/pubmed/36888909 http://dx.doi.org/10.1021/acs.jpcb.2c08820 |
Sumario: | [Image: see text] The adsorption of oxidatively damaged DNA onto ferromagnetic substrates was investigated. Both confocal fluorescence microscopy and quartz crystal microbalance methods show that the adsorption rate and the coverage depend on the magnetization direction of the substrate and the position of the damage site on the DNA relative to the substrate. SQUID magnetometry measurements show that the subsequent magnetic susceptibility of the DNA-coated ferromagnetic film depends on the direction of the magnetic field that was applied to the ferromagnetic film as the molecules were adsorbed. This study reveals that (i) the spin and charge polarization in DNA molecules is changed significantly by oxidative damage in the G bases and (ii) the rate of adsorption on a ferromagnet, as a function of the direction of the magnetic dipole of the surface, can be used as an assay to detect oxidative damage in the DNA. |
---|