Cargando…
Selecting High-Dimensional Representations of Physical Systems by Reweighted Diffusion Maps
[Image: see text] Constructing reduced representations of high-dimensional systems is a fundamental problem in physical chemistry. Many unsupervised machine learning methods can automatically find such low-dimensional representations. However, an often overlooked problem is what high-dimensional rep...
Autor principal: | Rydzewski, Jakub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041639/ https://www.ncbi.nlm.nih.gov/pubmed/36897996 http://dx.doi.org/10.1021/acs.jpclett.3c00265 |
Ejemplares similares
-
Multiscale Reweighted Stochastic Embedding: Deep Learning
of Collective Variables for Enhanced Sampling
por: Rydzewski, Jakub, et al.
Publicado: (2021) -
Reweighted Manifold
Learning of Collective Variables
from Enhanced Sampling Simulations
por: Rydzewski, Jakub, et al.
Publicado: (2022) -
Maxdenominator Reweighted Sparse Representation for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2017) -
A Reweighted Scheme to Improve the Representation of the Neural Autoregressive Distribution Estimator
por: Wang, Zheng, et al.
Publicado: (2018) -
Reweighting Parton Showers
por: Bellm, Johannes, et al.
Publicado: (2016)