Cargando…
Machine Learning Interatomic Potentials and Long-Range Physics
[Image: see text] Advances in machine learned interatomic potentials (MLIPs), such as those using neural networks, have resulted in short-range models that can infer interaction energies with near ab initio accuracy and orders of magnitude reduced computational cost. For many atom systems, including...
Autores principales: | Anstine, Dylan M., Isayev, Olexandr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041642/ https://www.ncbi.nlm.nih.gov/pubmed/36802360 http://dx.doi.org/10.1021/acs.jpca.2c06778 |
Ejemplares similares
-
Δ(2) machine learning for reaction property prediction
por: Zhao, Qiyuan, et al.
Publicado: (2023) -
Generative Models as
an Emerging Paradigm in the Chemical
Sciences
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles
por: Fronzi, Marco, et al.
Publicado: (2022) -
Interatomic potentials
por: Torrens, Iam
Publicado: (1972) -
Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles—Transferability towards Bulk
por: Fronzi, Marco, et al.
Publicado: (2023)