Cargando…

Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds

In this investigation, pressure microwave irradiation was used to clarify the activity of 1-(2-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (3) towards several active methylene derivatives utilized the pressurized microwave irradiation as green energy resource . Chalcone 3 was allowed to react w...

Descripción completa

Detalles Bibliográficos
Autores principales: Shalaby, Mona A., Fahim, Asmaa M., Rizk, Sameh A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042854/
https://www.ncbi.nlm.nih.gov/pubmed/36973332
http://dx.doi.org/10.1038/s41598-023-31995-w
Descripción
Sumario:In this investigation, pressure microwave irradiation was used to clarify the activity of 1-(2-hydroxyphenyl)-3-(4-methylphenyl)prop-2-en-1-one (3) towards several active methylene derivatives utilized the pressurized microwave irradiation as green energy resource . Chalcone 3 was allowed to react with ethyl cyanoacetate, acetylacetone, and thioglycolic acid; respectively, at 70 °C with pressure under microwave reaction condition to afford the corresponding 2-hydroxyphenylcyanopyridone, 2-hydroxyphenyl acetylcyclohexanone, and thieno[2,3-c]chromen-4-one derivatives respectively. Moreover, the reaction of chalcone 3 with hydrogen peroxide with stirring affords the corresponding chromen-4-one derivative. All the synthesized compounds were confirmed through spectral tools such as FT-IR, (1)HNMR, (13)CNMR, and mass spectrum. Furthermore, the synthesized heterocycles were exhibited excellent antioxidant activity and comparable with vitamin C, where the presence of the OH group increases the scavenger radical inhibition. Furthermore, the biological activity of compound 12 was demonstrated through molecular docking stimulation using two proteins, PDBID: 1DH2 and PDBID: 3RP8, which showed that compound 12 possesses greater binding energy and a shorter bond length comparable with ascorbic acid. Also, the compounds were optimized through DFT/B3LYP/6-31G (d,p) basis set and identification of their physical descriptors, whereas the compound 12 was confirmed through X-Ray single structure with Hirsh field analysis of the compound to know the hydrogen electrostatic bond interaction, and correlated with the optimized structure by comparing their bond length, bond angle, FT-IR, and NMR, which gave excellent correlation.