Cargando…
Deep neural network training method based on vectorgraphs for designing of metamaterial broadband polarization converters
In this work, we proposed a method of extracting feature parameters for deep neural network prediction based on the vectorgraph storage format, which can be applied to the design of electromagnetic metamaterials with sandwich structures. Compared to current methods of manually extracting feature par...
Autores principales: | Gao, Jiale, Feng, Chunjie, Wu, Xingyi, Wu, Yanghui, Zhu, Xiaobo, Sun, Daying, Yue, Yutao, Gu, Wenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042994/ https://www.ncbi.nlm.nih.gov/pubmed/36973537 http://dx.doi.org/10.1038/s41598-023-32142-1 |
Ejemplares similares
-
Broadband Bi-Directional Polarization-Insensitive Metamaterial Absorber
por: Tian, Feng, et al.
Publicado: (2021) -
Ultra-Wide Band and Multifunctional Polarization Converter Based on Dielectric Metamaterial
por: Gao, Ju, et al.
Publicado: (2019) -
Tunable broadband polarization converters based on coded graphene metasurfaces
por: Khajeh, Ali, et al.
Publicado: (2021) -
Broadband Solar Metamaterial Absorbers Empowered by Transformer‐Based Deep Learning
por: Chen, Wei, et al.
Publicado: (2023) -
Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter
por: Esakkimuthu, Manikandan, et al.
Publicado: (2022)