Cargando…
Predicting and understanding human action decisions during skillful joint-action using supervised machine learning and explainable-AI
This study investigated the utility of supervised machine learning (SML) and explainable artificial intelligence (AI) techniques for modeling and understanding human decision-making during multiagent task performance. Long short-term memory (LSTM) networks were trained to predict the target selectio...
Autores principales: | Auletta, Fabrizia, Kallen, Rachel W., di Bernardo, Mario, Richardson, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10042997/ https://www.ncbi.nlm.nih.gov/pubmed/36973473 http://dx.doi.org/10.1038/s41598-023-31807-1 |
Ejemplares similares
-
Decision Theory Meets Explainable AI
por: Främling, Kary
Publicado: (2020) -
Explainable AI as evidence of fair decisions
por: Leben, Derek
Publicado: (2023) -
Improving Clinical Nurses' Development of Supervision Skills through an Action Learning Approach
por: Sommer, Irene, et al.
Publicado: (2020) -
Joint action aesthetics
por: Vicary, Staci, et al.
Publicado: (2017) -
Explainable AI for Data-Driven Feedback and Intelligent Action Recommendations to Support Students Self-Regulation
por: Afzaal, Muhammad, et al.
Publicado: (2021)