Cargando…

The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem

We present a multidisciplinary forest ecosystem 3D perception dataset. The dataset was collected in the Hainich-Dün region in central Germany, which includes two dedicated areas, which are part of the Biodiversity Exploratories - a long term research platform for comparative and experimental biodive...

Descripción completa

Detalles Bibliográficos
Autores principales: Milz, Stefan, Wäldchen, Jana, Abouee, Amin, Ravichandran, Ashwanth A., Schall, Peter, Hagen, Chris, Borer, John, Lewandowski, Benjamin, Wittich, Hans-Christian, Mäder, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043017/
https://www.ncbi.nlm.nih.gov/pubmed/36973316
http://dx.doi.org/10.1038/s41597-023-02010-8
_version_ 1784913059244933120
author Milz, Stefan
Wäldchen, Jana
Abouee, Amin
Ravichandran, Ashwanth A.
Schall, Peter
Hagen, Chris
Borer, John
Lewandowski, Benjamin
Wittich, Hans-Christian
Mäder, Patrick
author_facet Milz, Stefan
Wäldchen, Jana
Abouee, Amin
Ravichandran, Ashwanth A.
Schall, Peter
Hagen, Chris
Borer, John
Lewandowski, Benjamin
Wittich, Hans-Christian
Mäder, Patrick
author_sort Milz, Stefan
collection PubMed
description We present a multidisciplinary forest ecosystem 3D perception dataset. The dataset was collected in the Hainich-Dün region in central Germany, which includes two dedicated areas, which are part of the Biodiversity Exploratories - a long term research platform for comparative and experimental biodiversity and ecosystem research. The dataset combines several disciplines, including computer science and robotics, biology, bio-geochemistry, and forestry science. We present results for common 3D perception tasks, including classification, depth estimation, localization, and path planning. We combine the full suite of modern perception sensors, including high-resolution fisheye cameras, 3D dense LiDAR, differential GPS, and an inertial measurement unit, with ecological metadata of the area, including stand age, diameter, exact 3D position, and species. The dataset consists of three hand held measurement series taken from sensors mounted on a UAV during each of three seasons: winter, spring, and early summer. This enables new research opportunities and paves the way for testing forest environment 3D perception tasks and mission set automation for robotics.
format Online
Article
Text
id pubmed-10043017
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100430172023-03-29 The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem Milz, Stefan Wäldchen, Jana Abouee, Amin Ravichandran, Ashwanth A. Schall, Peter Hagen, Chris Borer, John Lewandowski, Benjamin Wittich, Hans-Christian Mäder, Patrick Sci Data Data Descriptor We present a multidisciplinary forest ecosystem 3D perception dataset. The dataset was collected in the Hainich-Dün region in central Germany, which includes two dedicated areas, which are part of the Biodiversity Exploratories - a long term research platform for comparative and experimental biodiversity and ecosystem research. The dataset combines several disciplines, including computer science and robotics, biology, bio-geochemistry, and forestry science. We present results for common 3D perception tasks, including classification, depth estimation, localization, and path planning. We combine the full suite of modern perception sensors, including high-resolution fisheye cameras, 3D dense LiDAR, differential GPS, and an inertial measurement unit, with ecological metadata of the area, including stand age, diameter, exact 3D position, and species. The dataset consists of three hand held measurement series taken from sensors mounted on a UAV during each of three seasons: winter, spring, and early summer. This enables new research opportunities and paves the way for testing forest environment 3D perception tasks and mission set automation for robotics. Nature Publishing Group UK 2023-03-27 /pmc/articles/PMC10043017/ /pubmed/36973316 http://dx.doi.org/10.1038/s41597-023-02010-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Milz, Stefan
Wäldchen, Jana
Abouee, Amin
Ravichandran, Ashwanth A.
Schall, Peter
Hagen, Chris
Borer, John
Lewandowski, Benjamin
Wittich, Hans-Christian
Mäder, Patrick
The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title_full The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title_fullStr The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title_full_unstemmed The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title_short The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem
title_sort hainich: a multidisciplinary vision data-set for a better understanding of the forest ecosystem
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043017/
https://www.ncbi.nlm.nih.gov/pubmed/36973316
http://dx.doi.org/10.1038/s41597-023-02010-8
work_keys_str_mv AT milzstefan thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT waldchenjana thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT aboueeamin thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT ravichandranashwantha thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT schallpeter thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT hagenchris thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT borerjohn thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT lewandowskibenjamin thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT wittichhanschristian thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT maderpatrick thehainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT milzstefan hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT waldchenjana hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT aboueeamin hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT ravichandranashwantha hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT schallpeter hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT hagenchris hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT borerjohn hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT lewandowskibenjamin hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT wittichhanschristian hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem
AT maderpatrick hainichamultidisciplinaryvisiondatasetforabetterunderstandingoftheforestecosystem