Cargando…
Artificial Intelligence Increases the Agreement among Physicians Classifying Focal Skeleton/Bone Marrow Uptake in Hodgkin’s Lymphoma Patients Staged with [(18)F]FDG PET/CT—a Retrospective Study
PURPOSE: Classification of focal skeleton/bone marrow uptake (BMU) can be challenging. The aim is to investigate whether an artificial intelligence–based method (AI), which highlights suspicious focal BMU, increases interobserver agreement among a group of physicians from different hospitals classif...
Autores principales: | Sadik, May, López-Urdaneta, Jesús, Ulén, Johannes, Enqvist, Olof, Andersson, Per-Ola, Kumar, Rajender, Trägårdh, Elin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043120/ https://www.ncbi.nlm.nih.gov/pubmed/36998589 http://dx.doi.org/10.1007/s13139-022-00765-3 |
Ejemplares similares
-
Artificial intelligence could alert for focal skeleton/bone marrow uptake in Hodgkin’s lymphoma patients staged with FDG-PET/CT
por: Sadik, May, et al.
Publicado: (2021) -
AI-based detection of lung lesions in [(18)F]FDG PET-CT from lung cancer patients
por: Borrelli, Pablo, et al.
Publicado: (2021) -
RECOMIA—a cloud-based platform for artificial intelligence research in nuclear medicine and radiology
por: Trägårdh, Elin, et al.
Publicado: (2020) -
Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth
por: Sartor, Hanna, et al.
Publicado: (2020) -
Artificial intelligence-aided CT segmentation for body composition analysis: a validation study
por: Borrelli, Pablo, et al.
Publicado: (2021)