Cargando…
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
Background: Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ∼50% post-ablat...
Autores principales: | Ogbomo-Harmitt, Shaheim, Muffoletto, Marica, Zeidan, Aya, Qureshi, Ahmed, King, Andrew P., Aslanidi, Oleg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043207/ https://www.ncbi.nlm.nih.gov/pubmed/36998987 http://dx.doi.org/10.3389/fphys.2023.1054401 |
Ejemplares similares
-
Can artificial intelligence prediction of successful atrial fibrillation catheter ablation therapy be interpretable?
por: Ogbomo-Harmitt, S, et al.
Publicado: (2022) -
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Corrigendum: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Muizniece, Laila, et al.
Publicado: (2021) -
Toward Patient-Specific Prediction of Ablation Strategies for Atrial Fibrillation Using Deep Learning
por: Muffoletto, Marica, et al.
Publicado: (2021) -
Novel Computational Analysis of Left Atrial Anatomy Improves Prediction of Atrial Fibrillation Recurrence after Ablation
por: Varela, Marta, et al.
Publicado: (2017)