Cargando…
Brain-machine interface based on transfer-learning for detecting the appearance of obstacles during exoskeleton-assisted walking
INTRODUCTION: Brain-machine interfaces (BMIs) attempt to establish communication between the user and the device to be controlled. BMIs have great challenges to face in order to design a robust control in the real field of application. The artifacts, high volume of training data, and non-stationarit...
Autores principales: | Quiles, Vicente, Ferrero, Laura, Iáñez, Eduardo, Ortiz, Mario, Gil-Agudo, Ángel, Azorín, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043233/ https://www.ncbi.nlm.nih.gov/pubmed/36998726 http://dx.doi.org/10.3389/fnins.2023.1154480 |
Ejemplares similares
-
Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton
por: Ferrero, Laura, et al.
Publicado: (2023) -
Pseudo-Online BMI Based on EEG to Detect the Appearance of Sudden Obstacles during Walking
por: Elvira, María, et al.
Publicado: (2019) -
Decoding of Turning Intention during Walking Based on EEG Biomarkers
por: Quiles, Vicente, et al.
Publicado: (2022) -
Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton
por: Ortiz, Mario, et al.
Publicado: (2020) -
Analyzing EEG signals to detect unexpected obstacles during walking
por: Salazar-Varas, R., et al.
Publicado: (2015)