Cargando…
CRMnet: A deep learning model for predicting gene expression from large regulatory sequence datasets
Recent large datasets measuring the gene expression of millions of possible gene promoter sequences provide a resource to design and train optimized deep neural network architectures to predict expression from sequences. High predictive performance due to the modeling of dependencies within and betw...
Autores principales: | Ding, Ke, Dixit, Gunjan, Parker, Brian J., Wen, Jiayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043243/ https://www.ncbi.nlm.nih.gov/pubmed/36999047 http://dx.doi.org/10.3389/fdata.2023.1113402 |
Ejemplares similares
-
Improving Diagnosis of Depression With XGBOOST Machine Learning Model and a Large Biomarkers Dutch Dataset (n = 11,081)
por: Sharma, Amita, et al.
Publicado: (2020) -
R*-Grove: Balanced Spatial Partitioning for Large-Scale Datasets
por: Vu, Tin, et al.
Publicado: (2020) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Deep Representation Learning for Social Network Analysis
por: Tan, Qiaoyu, et al.
Publicado: (2019) -
Public Service and Public Happiness: Inferences From Big Weibo Datasets for 31 Chinese Provincial Governments
por: Ding, Yi Zhou
Publicado: (2022)