Cargando…
Anomaly detection in radiotherapy plans using deep autoencoder networks
PURPOSE: Treatment plans are used for patients under radiotherapy in clinics. Before execution, these plans are checked for safety and quality by human experts. A few of them were identified with flaws and needed further improvement. To automate this checking process, an unsupervised learning method...
Autores principales: | Huang, Peng, Shang, Jiawen, Xu, Yingjie, Hu, Zhihui, Zhang, Ke, Dai, Jianrong, Yan, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043249/ https://www.ncbi.nlm.nih.gov/pubmed/36998450 http://dx.doi.org/10.3389/fonc.2023.1142947 |
Ejemplares similares
-
Combining autoencoder with clustering analysis for anomaly detection in radiotherapy plans
por: Huang, Peng, et al.
Publicado: (2023) -
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021) -
Anomaly Detection of Water Level Using Deep Autoencoder
por: Nicholaus, Isack Thomas, et al.
Publicado: (2021) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
por: Tang, Ta-Wei, et al.
Publicado: (2022)