Cargando…
A RUSBoosted tree method for k-complex detection using tunable Q-factor wavelet transform and multi-domain feature extraction
BACKGROUND: K-complex detection traditionally relied on expert clinicians, which is time-consuming and onerous. Various automatic k-complex detection-based machine learning methods are presented. However, these methods always suffered from imbalanced datasets, which impede the subsequent processing...
Autores principales: | Li, Yabing, Dong, Xinglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043251/ https://www.ncbi.nlm.nih.gov/pubmed/36998730 http://dx.doi.org/10.3389/fnins.2023.1108059 |
Ejemplares similares
-
A study on feature selection using multi-domain feature extraction for automated k-complex detection
por: Li, Yabing, et al.
Publicado: (2023) -
Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis
por: Lajnef, Tarek, et al.
Publicado: (2015) -
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020) -
Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform
por: Dash, Deba Prasad, et al.
Publicado: (2020) -
Premature Ventricular Contraction (PVC) Detection System Based on Tunable Q-Factor Wavelet Transform
por: Mazidi, Mohamad Hadi, et al.
Publicado: (2022)