Cargando…

EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction

Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the convention...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashwini, C., Sellam, V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043543/
https://www.ncbi.nlm.nih.gov/pubmed/37155463
http://dx.doi.org/10.1007/s00521-023-08289-3
Descripción
Sumario:Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.