Cargando…
Group 13 exchange and transborylation in catalysis
Catalysis is dominated by the use of rare and potentially toxic transition metals. The main group offers a potentially sustainable alternative for catalysis, due to the generally higher abundance and lower toxicity of these elements. Group 13 elements have a rich catalogue of stoichiometric addition...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043741/ https://www.ncbi.nlm.nih.gov/pubmed/36998308 http://dx.doi.org/10.3762/bjoc.19.28 |
Sumario: | Catalysis is dominated by the use of rare and potentially toxic transition metals. The main group offers a potentially sustainable alternative for catalysis, due to the generally higher abundance and lower toxicity of these elements. Group 13 elements have a rich catalogue of stoichiometric addition reactions to unsaturated bonds but cannot undergo the redox chemistry which underpins transition-metal catalysis. Group 13 exchange reactions transfer one or more groups from one group 13 element to another, through σ-bond metathesis; where boron is both of the group 13 elements, this is termed transborylation. These redox-neutral processes are increasingly being used to render traditionally stoichiometric group 13-mediated processes catalytic and develop new catalytic processes, examples of which are the focus of this review. |
---|