Cargando…

Local tissue mechanics control cardiac pacemaker cell embryonic patterning

Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Henley, Trevor, Goudy, Julie, Easterling, Marietta, Donley, Carrie, Wirka, Robert, Bressan, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043993/
https://www.ncbi.nlm.nih.gov/pubmed/36973005
http://dx.doi.org/10.26508/lsa.202201799
_version_ 1784913264940941312
author Henley, Trevor
Goudy, Julie
Easterling, Marietta
Donley, Carrie
Wirka, Robert
Bressan, Michael
author_facet Henley, Trevor
Goudy, Julie
Easterling, Marietta
Donley, Carrie
Wirka, Robert
Bressan, Michael
author_sort Henley, Trevor
collection PubMed
description Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a “soft” macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
format Online
Article
Text
id pubmed-10043993
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-100439932023-03-29 Local tissue mechanics control cardiac pacemaker cell embryonic patterning Henley, Trevor Goudy, Julie Easterling, Marietta Donley, Carrie Wirka, Robert Bressan, Michael Life Sci Alliance Research Articles Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a “soft” macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation. Life Science Alliance LLC 2023-03-27 /pmc/articles/PMC10043993/ /pubmed/36973005 http://dx.doi.org/10.26508/lsa.202201799 Text en © 2023 Henley et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Articles
Henley, Trevor
Goudy, Julie
Easterling, Marietta
Donley, Carrie
Wirka, Robert
Bressan, Michael
Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title_full Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title_fullStr Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title_full_unstemmed Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title_short Local tissue mechanics control cardiac pacemaker cell embryonic patterning
title_sort local tissue mechanics control cardiac pacemaker cell embryonic patterning
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043993/
https://www.ncbi.nlm.nih.gov/pubmed/36973005
http://dx.doi.org/10.26508/lsa.202201799
work_keys_str_mv AT henleytrevor localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning
AT goudyjulie localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning
AT easterlingmarietta localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning
AT donleycarrie localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning
AT wirkarobert localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning
AT bressanmichael localtissuemechanicscontrolcardiacpacemakercellembryonicpatterning