Cargando…

Serotype Occurrence, Virulence Profiles, Antimicrobial Resistance and Molecular Characterization of Salmonella Isolated from Hospitalized Patients with Gastroenteritis in Great Tunisia between 2010 and 2020

Non-typhoid Salmonella is one of the major causes of food-borne infections worldwide. The aim of the current study is to determine the serotype occurrence, virulence factors and antimicrobial resistance patterns of Salmonella isolated from hospitalized patients. The identification of Salmonella stra...

Descripción completa

Detalles Bibliográficos
Autores principales: Oueslati, Walid, Ridha Rjeibi, Mohamed, Benyedem, Hayet, Jebali, Mounir, Souissi, Fatma, Selmi, Rachid, El Asli, Mohamed Sélim, Barguellil, Farouk, Ettriqui, Abdelfettah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044041/
https://www.ncbi.nlm.nih.gov/pubmed/36978394
http://dx.doi.org/10.3390/antibiotics12030526
Descripción
Sumario:Non-typhoid Salmonella is one of the major causes of food-borne infections worldwide. The aim of the current study is to determine the serotype occurrence, virulence factors and antimicrobial resistance patterns of Salmonella isolated from hospitalized patients. The identification of Salmonella strains was performed according to REMIC, 2018. The susceptibility of Salmonella isolates was assessed against 20 antimicrobials using the disk diffusion method. Some virulence and antimicrobial resistance genes were identified using PCR. Among the 61 isolated Salmonella strains, seven serotypes were identified and all were positive for the virulence genes invA, mgtC and sirA. Critical resistance rates (>40%) were detected for tetracycline, nalidixic acid, amoxicillin and fluoroquinolones. However, resistances to ertapenem, ceftazidim, aztreonam and colistin were null. In addition, 33% of the isolated strains were multidrug-resistant (MDR). Moreover, 80% and 60% of S. Kentucky isolates were identified as fluoroquinolone-resistant and MDR strains, respectively. The qnrB gene was amplified in 63.2% of fluoroquinolone-resistant strains. The dfrA1 gene was identified in 20% (4/20) of the trimethoprim-sulfamethoxazole resistant strains and the integrase Class 2 gene was amplified in only 8.2% (5/61) of the isolates. Our findings highlight the emergence of MDR Salmonella isolates. A rationalization of antimicrobial use is urgently recommended in both human and veterinary medicine.