Cargando…
Uncovering psychiatric phenotypes using unsupervised machine learning: A data-driven symptoms approach
BACKGROUND: Current categorical classification systems of psychiatric diagnoses lead to heterogeneity of symptoms within disorders and common co-occurrence of disorders. We investigated the heterogeneous and overlapping nature of symptom endorsement in a population-based sample across three of the m...
Autores principales: | Hofman, Amy, Lier, Isabelle, Ikram, M. Arfan, van Wingerden, Marijn, Luik, Annemarie I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044296/ https://www.ncbi.nlm.nih.gov/pubmed/36804948 http://dx.doi.org/10.1192/j.eurpsy.2023.13 |
Ejemplares similares
-
Substitutions of physical activity, sedentary behaviour and sleep: associations with mental health in middle-aged and elderly persons
por: Hofman, Amy, et al.
Publicado: (2022) -
The bidirectional association of 24-h activity rhythms and sleep with depressive symptoms in middle-aged and elderly persons
por: de Feijter, Maud, et al.
Publicado: (2023) -
Data-driven categorization of postoperative delirium symptoms using unsupervised machine learning
por: Sri-iesaranusorn, Panyawut, et al.
Publicado: (2023) -
Trajectories and Determinants of Physical Activity during COVID-19 Pandemic: A Population-Based Study of Middle-Aged and Elderly Individuals in The Netherlands
por: Hofman, Amy, et al.
Publicado: (2021) -
Associations of neuroimaging markers with depressive symptoms over time in middle-aged and elderly persons
por: Özel, Fatih, et al.
Publicado: (2023)