Cargando…

Continuous manufacturing of highly stable lead halide perovskite nanocrystals via a dual-reactor strategy

Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Shuang, Biesold, Gill M., Zhuang, Mingyue, Kang, Zhitao, Wagner, Brent, Lin, Zhiqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044306/
https://www.ncbi.nlm.nih.gov/pubmed/36998667
http://dx.doi.org/10.1039/d2na00744d
Descripción
Sumario:Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices.