Cargando…
TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries for high-throughput phenotyping of vegetation physiology
BACKGROUND: Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. H...
Autores principales: | Wong, Christopher Y. S., Jones, Taylor, McHugh, Devin P., Gilbert, Matthew E., Gepts, Paul, Palkovic, Antonia, Buckley, Thomas N., Magney, Troy S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044391/ https://www.ncbi.nlm.nih.gov/pubmed/36978119 http://dx.doi.org/10.1186/s13007-023-01001-5 |
Ejemplares similares
-
Hyperspectral Remote Sensing for Phenotyping the Physiological Drought Response of Common and Tepary Bean
por: Wong, Christopher YS, et al.
Publicado: (2023) -
Estimating anisotropy directly via neural timeseries
por: Fagerholm, Erik D., et al.
Publicado: (2022) -
Experimental evaluation of baselines for forecasting social media timeseries
por: Ng, Kin Wai, et al.
Publicado: (2023) -
Designing Bivariate Auto-Regressive Timeseries with Controlled Granger Causality
por: Hidaka, Shohei, et al.
Publicado: (2021) -
New Small Wheels for the ATLAS Muon Spectrometer
por: Perganti, M
Publicado: (2020)