Cargando…
Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022
Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044460/ https://www.ncbi.nlm.nih.gov/pubmed/36978451 http://dx.doi.org/10.3390/antibiotics12030584 |
_version_ | 1784913361064951808 |
---|---|
author | Debergh, Hanne Becker, Pierre Vercammen, Francis Lagrou, Katrien Haesendonck, Roel Saegerman, Claude Packeu, Ann |
author_facet | Debergh, Hanne Becker, Pierre Vercammen, Francis Lagrou, Katrien Haesendonck, Roel Saegerman, Claude Packeu, Ann |
author_sort | Debergh, Hanne |
collection | PubMed |
description | Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was assessed through the analysis of air, water, sand and nest samples during four non-consecutive days in 2021–2022. From these samples, potential azole-resistant A. fumigatus (ARAF) isolates were detected using a selective culture medium. A total of 28 veterinary isolates obtained after necropsy of Humboldt penguins and other avian species from the zoo were also included. All veterinary and suspected ARAF isolates from the environment were characterized for their azole-resistance profile by broth microdilution. Isolates displaying phenotypic resistance against at least one medical azole were systematically screened for mutations in the cyp51A gene. A total of 14 (13.6%) ARAF isolates were identified from the environment (n = 8) and from Humboldt penguins (n = 6). The TR34/L98H mutation was observed in all resistant environmental strains, and in two resistant veterinary strains. To the best of our knowledge, this is the first description of this mutation in A. fumigatus isolates from Humboldt penguins. During the period 2017–2022, pulmonary aspergillosis was confirmed in 51 necropsied penguins, which reflects a death rate due to aspergillosis of 68.0%, mostly affecting adults. Microsatellite polymorphism analysis revealed a high level of diversity among environmental and veterinary A. fumigatus isolates. However, a cluster was observed between one veterinary isolate and six environmental strains, all resistant to medical azoles. In conclusion, the environment of the Humboldt penguins is a potential contamination source of ARAF, making their management even more complex. |
format | Online Article Text |
id | pubmed-10044460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100444602023-03-29 Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 Debergh, Hanne Becker, Pierre Vercammen, Francis Lagrou, Katrien Haesendonck, Roel Saegerman, Claude Packeu, Ann Antibiotics (Basel) Article Aspergillus fumigatus is the main causative agent of avian aspergillosis and results in significant health problems in birds, especially those living in captivity. The fungal contamination by A. fumigatus in the environment of Humboldt penguins (Spheniscus humboldti), located in a Belgian zoo, was assessed through the analysis of air, water, sand and nest samples during four non-consecutive days in 2021–2022. From these samples, potential azole-resistant A. fumigatus (ARAF) isolates were detected using a selective culture medium. A total of 28 veterinary isolates obtained after necropsy of Humboldt penguins and other avian species from the zoo were also included. All veterinary and suspected ARAF isolates from the environment were characterized for their azole-resistance profile by broth microdilution. Isolates displaying phenotypic resistance against at least one medical azole were systematically screened for mutations in the cyp51A gene. A total of 14 (13.6%) ARAF isolates were identified from the environment (n = 8) and from Humboldt penguins (n = 6). The TR34/L98H mutation was observed in all resistant environmental strains, and in two resistant veterinary strains. To the best of our knowledge, this is the first description of this mutation in A. fumigatus isolates from Humboldt penguins. During the period 2017–2022, pulmonary aspergillosis was confirmed in 51 necropsied penguins, which reflects a death rate due to aspergillosis of 68.0%, mostly affecting adults. Microsatellite polymorphism analysis revealed a high level of diversity among environmental and veterinary A. fumigatus isolates. However, a cluster was observed between one veterinary isolate and six environmental strains, all resistant to medical azoles. In conclusion, the environment of the Humboldt penguins is a potential contamination source of ARAF, making their management even more complex. MDPI 2023-03-15 /pmc/articles/PMC10044460/ /pubmed/36978451 http://dx.doi.org/10.3390/antibiotics12030584 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Debergh, Hanne Becker, Pierre Vercammen, Francis Lagrou, Katrien Haesendonck, Roel Saegerman, Claude Packeu, Ann Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title | Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title_full | Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title_fullStr | Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title_full_unstemmed | Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title_short | Pulmonary Aspergillosis in Humboldt Penguins—Susceptibility Patterns and Molecular Epidemiology of Clinical and Environmental Aspergillus fumigatus Isolates from a Belgian Zoo, 2017–2022 |
title_sort | pulmonary aspergillosis in humboldt penguins—susceptibility patterns and molecular epidemiology of clinical and environmental aspergillus fumigatus isolates from a belgian zoo, 2017–2022 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044460/ https://www.ncbi.nlm.nih.gov/pubmed/36978451 http://dx.doi.org/10.3390/antibiotics12030584 |
work_keys_str_mv | AT deberghhanne pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT beckerpierre pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT vercammenfrancis pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT lagroukatrien pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT haesendonckroel pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT saegermanclaude pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 AT packeuann pulmonaryaspergillosisinhumboldtpenguinssusceptibilitypatternsandmolecularepidemiologyofclinicalandenvironmentalaspergillusfumigatusisolatesfromabelgianzoo20172022 |