Cargando…
Geographically weighted linear combination test for gene-set analysis of a continuous spatial phenotype as applied to intratumor heterogeneity
Background: The impact of gene-sets on a spatial phenotype is not necessarily uniform across different locations of cancer tissue. This study introduces a computational platform, GWLCT, for combining gene set analysis with spatial data modeling to provide a new statistical test for location-specific...
Autores principales: | Amini, Payam, Hajihosseini, Morteza, Pyne, Saumyadipta, Dinu, Irina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044624/ https://www.ncbi.nlm.nih.gov/pubmed/36998245 http://dx.doi.org/10.3389/fcell.2023.1065586 |
Ejemplares similares
-
Geostatistical Modeling and Heterogeneity Analysis of Tumor Molecular Landscape
por: Hajihosseini, Morteza, et al.
Publicado: (2022) -
Linear combination test for gene set analysis of a continuous phenotype
por: Dinu, Irina, et al.
Publicado: (2013) -
Gene set enrichment analysis for multiple continuous phenotypes
por: Wang, Xiaoming, et al.
Publicado: (2014) -
Infants’ gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data
por: Hajihosseini, Morteza, et al.
Publicado: (2023) -
Microenvironmental Signals and Biochemical Information Processing: Cooperative Determinants of Intratumoral Plasticity and Heterogeneity
por: Davies, Alexander E., et al.
Publicado: (2018)