Cargando…

Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO

The maximum efficiency of solar cells utilizing a single layer for photovoltaic conversion is given by the single junction Shockley–Queisser limit. In tandem solar cells, a stack of materials with different band gaps contribute to the conversion, enabling tandem cells to exceed the single junction S...

Descripción completa

Detalles Bibliográficos
Autores principales: Kjeldby, S. B., Nguyen, P. D., García-Fernández, J., Haug, K., Galeckas, A., Jensen, I. J. T., Thøgersen, A., Vines, L., Prytz, Ø.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044669/
https://www.ncbi.nlm.nih.gov/pubmed/36998644
http://dx.doi.org/10.1039/d2na00849a
_version_ 1784913402594852864
author Kjeldby, S. B.
Nguyen, P. D.
García-Fernández, J.
Haug, K.
Galeckas, A.
Jensen, I. J. T.
Thøgersen, A.
Vines, L.
Prytz, Ø.
author_facet Kjeldby, S. B.
Nguyen, P. D.
García-Fernández, J.
Haug, K.
Galeckas, A.
Jensen, I. J. T.
Thøgersen, A.
Vines, L.
Prytz, Ø.
author_sort Kjeldby, S. B.
collection PubMed
description The maximum efficiency of solar cells utilizing a single layer for photovoltaic conversion is given by the single junction Shockley–Queisser limit. In tandem solar cells, a stack of materials with different band gaps contribute to the conversion, enabling tandem cells to exceed the single junction Shockley–Queisser limit. An intriguing variant of this approach is to embed semiconducting nanoparticles in a transparent conducting oxide (TCO) solar cell front contact. This alternative route would enhance the functionality of the TCO layer, allowing it to participate directly in photovoltaic conversion via photon absorption and charge carrier generation in the nanoparticles. Here, we demonstrate the functionalization of ZnO through incorporation of either ZnFe(2)O(4) spinel nanoparticles (NPs) or inversion domain boundaries (IDBs) decorated by Fe. Diffuse reflectance spectroscopy and electron energy loss spectroscopy show that samples containing spinel particles and samples containing IDBs decorated by Fe both display enhanced absorption in the visible range at around 2.0 and 2.6 eV. This striking functional similarity was attributed to the local structural similarity around Fe-ions in spinel ZnFe(2)O(4) and at Fe-decorated basal IDBs. Hence, functional properties of the ZnFe(2)O(4) arise already for the two-dimensional basal IDBs, from which these planar defects behave like two-dimensional spinel-like inclusions in ZnO. Cathodoluminescence spectra reveal an increased luminescence around the band edge of spinel ZnFe(2)O(4) when measuring on the spinel ZnFe(2)O(4) NPs embedded in ZnO, whereas spectra from Fe-decorated IDBs could be deconvoluted into luminescence contributions from bulk ZnO and bulk ZnFe(2)O(4).
format Online
Article
Text
id pubmed-10044669
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-100446692023-03-29 Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO Kjeldby, S. B. Nguyen, P. D. García-Fernández, J. Haug, K. Galeckas, A. Jensen, I. J. T. Thøgersen, A. Vines, L. Prytz, Ø. Nanoscale Adv Chemistry The maximum efficiency of solar cells utilizing a single layer for photovoltaic conversion is given by the single junction Shockley–Queisser limit. In tandem solar cells, a stack of materials with different band gaps contribute to the conversion, enabling tandem cells to exceed the single junction Shockley–Queisser limit. An intriguing variant of this approach is to embed semiconducting nanoparticles in a transparent conducting oxide (TCO) solar cell front contact. This alternative route would enhance the functionality of the TCO layer, allowing it to participate directly in photovoltaic conversion via photon absorption and charge carrier generation in the nanoparticles. Here, we demonstrate the functionalization of ZnO through incorporation of either ZnFe(2)O(4) spinel nanoparticles (NPs) or inversion domain boundaries (IDBs) decorated by Fe. Diffuse reflectance spectroscopy and electron energy loss spectroscopy show that samples containing spinel particles and samples containing IDBs decorated by Fe both display enhanced absorption in the visible range at around 2.0 and 2.6 eV. This striking functional similarity was attributed to the local structural similarity around Fe-ions in spinel ZnFe(2)O(4) and at Fe-decorated basal IDBs. Hence, functional properties of the ZnFe(2)O(4) arise already for the two-dimensional basal IDBs, from which these planar defects behave like two-dimensional spinel-like inclusions in ZnO. Cathodoluminescence spectra reveal an increased luminescence around the band edge of spinel ZnFe(2)O(4) when measuring on the spinel ZnFe(2)O(4) NPs embedded in ZnO, whereas spectra from Fe-decorated IDBs could be deconvoluted into luminescence contributions from bulk ZnO and bulk ZnFe(2)O(4). RSC 2023-03-20 /pmc/articles/PMC10044669/ /pubmed/36998644 http://dx.doi.org/10.1039/d2na00849a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Kjeldby, S. B.
Nguyen, P. D.
García-Fernández, J.
Haug, K.
Galeckas, A.
Jensen, I. J. T.
Thøgersen, A.
Vines, L.
Prytz, Ø.
Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title_full Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title_fullStr Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title_full_unstemmed Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title_short Optical properties of ZnFe(2)O(4) nanoparticles and Fe-decorated inversion domain boundaries in ZnO
title_sort optical properties of znfe(2)o(4) nanoparticles and fe-decorated inversion domain boundaries in zno
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044669/
https://www.ncbi.nlm.nih.gov/pubmed/36998644
http://dx.doi.org/10.1039/d2na00849a
work_keys_str_mv AT kjeldbysb opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT nguyenpd opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT garciafernandezj opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT haugk opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT galeckasa opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT jensenijt opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT thøgersena opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT vinesl opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno
AT prytzø opticalpropertiesofznfe2o4nanoparticlesandfedecoratedinversiondomainboundariesinzno