Cargando…
Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing
BACKGROUND: Tumor mutational burden (TMB) has been investigated as a biomarker for immune checkpoint blockade (ICB) therapy. Increasingly, TMB is being estimated with gene panel–based assays (as opposed to full exome sequencing) and different gene panels cover overlapping but distinct genomic coordi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044680/ https://www.ncbi.nlm.nih.gov/pubmed/36999044 http://dx.doi.org/10.1158/2767-9764.CRC-22-0339 |
_version_ | 1784913405720657920 |
---|---|
author | Anaya, Jordan Sidhom, John-William Cummings, Craig A. Baras, Alexander S. |
author_facet | Anaya, Jordan Sidhom, John-William Cummings, Craig A. Baras, Alexander S. |
author_sort | Anaya, Jordan |
collection | PubMed |
description | BACKGROUND: Tumor mutational burden (TMB) has been investigated as a biomarker for immune checkpoint blockade (ICB) therapy. Increasingly, TMB is being estimated with gene panel–based assays (as opposed to full exome sequencing) and different gene panels cover overlapping but distinct genomic coordinates, making comparisons across panels difficult. Previous studies have suggested that standardization and calibration to exome-derived TMB be done for each panel to ensure comparability. With TMB cutoffs being developed from panel-based assays, there is a need to understand how to properly estimate exomic TMB values from different panel-based assays. DESIGN: Our approach to calibration of panel-derived TMB to exomic TMB proposes the use of probabilistic mixture models that allow for nonlinear relationships along with heteroscedastic error. We examined various inputs including nonsynonymous, synonymous, and hotspot counts along with genetic ancestry. Using The Cancer Genome Atlas cohort, we generated a tumor-only version of the panel-restricted data by reintroducing private germline variants. RESULTS: We were able to model more accurately the distribution of both tumor-normal and tumor-only data using the proposed probabilistic mixture models as compared with linear regression. Applying a model trained on tumor-normal data to tumor-only input results in biased TMB predictions. Including synonymous mutations resulted in better regression metrics across both data types, but ultimately a model able to dynamically weight the various input mutation types exhibited optimal performance. Including genetic ancestry improved model performance only in the context of tumor-only data, wherein private germline variants are observed. SIGNIFICANCE: A probabilistic mixture model better models the nonlinearity and heteroscedasticity of the data as compared with linear regression. Tumor-only panel data are needed to properly calibrate tumor-only panels to exomic TMB. Leveraging the uncertainty of point estimates from these models better informs cohort stratification in terms of TMB. |
format | Online Article Text |
id | pubmed-10044680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for Cancer Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-100446802023-03-29 Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing Anaya, Jordan Sidhom, John-William Cummings, Craig A. Baras, Alexander S. Cancer Res Commun Research Article BACKGROUND: Tumor mutational burden (TMB) has been investigated as a biomarker for immune checkpoint blockade (ICB) therapy. Increasingly, TMB is being estimated with gene panel–based assays (as opposed to full exome sequencing) and different gene panels cover overlapping but distinct genomic coordinates, making comparisons across panels difficult. Previous studies have suggested that standardization and calibration to exome-derived TMB be done for each panel to ensure comparability. With TMB cutoffs being developed from panel-based assays, there is a need to understand how to properly estimate exomic TMB values from different panel-based assays. DESIGN: Our approach to calibration of panel-derived TMB to exomic TMB proposes the use of probabilistic mixture models that allow for nonlinear relationships along with heteroscedastic error. We examined various inputs including nonsynonymous, synonymous, and hotspot counts along with genetic ancestry. Using The Cancer Genome Atlas cohort, we generated a tumor-only version of the panel-restricted data by reintroducing private germline variants. RESULTS: We were able to model more accurately the distribution of both tumor-normal and tumor-only data using the proposed probabilistic mixture models as compared with linear regression. Applying a model trained on tumor-normal data to tumor-only input results in biased TMB predictions. Including synonymous mutations resulted in better regression metrics across both data types, but ultimately a model able to dynamically weight the various input mutation types exhibited optimal performance. Including genetic ancestry improved model performance only in the context of tumor-only data, wherein private germline variants are observed. SIGNIFICANCE: A probabilistic mixture model better models the nonlinearity and heteroscedasticity of the data as compared with linear regression. Tumor-only panel data are needed to properly calibrate tumor-only panels to exomic TMB. Leveraging the uncertainty of point estimates from these models better informs cohort stratification in terms of TMB. American Association for Cancer Research 2023-03-28 /pmc/articles/PMC10044680/ /pubmed/36999044 http://dx.doi.org/10.1158/2767-9764.CRC-22-0339 Text en © 2023 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by/4.0/This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. |
spellingShingle | Research Article Anaya, Jordan Sidhom, John-William Cummings, Craig A. Baras, Alexander S. Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title | Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title_full | Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title_fullStr | Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title_full_unstemmed | Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title_short | Probabilistic Mixture Models Improve Calibration of Panel-derived Tumor Mutational Burden in the Context of both Tumor-normal and Tumor-only Sequencing |
title_sort | probabilistic mixture models improve calibration of panel-derived tumor mutational burden in the context of both tumor-normal and tumor-only sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044680/ https://www.ncbi.nlm.nih.gov/pubmed/36999044 http://dx.doi.org/10.1158/2767-9764.CRC-22-0339 |
work_keys_str_mv | AT anayajordan probabilisticmixturemodelsimprovecalibrationofpanelderivedtumormutationalburdeninthecontextofbothtumornormalandtumoronlysequencing AT sidhomjohnwilliam probabilisticmixturemodelsimprovecalibrationofpanelderivedtumormutationalburdeninthecontextofbothtumornormalandtumoronlysequencing AT cummingscraiga probabilisticmixturemodelsimprovecalibrationofpanelderivedtumormutationalburdeninthecontextofbothtumornormalandtumoronlysequencing AT barasalexanders probabilisticmixturemodelsimprovecalibrationofpanelderivedtumormutationalburdeninthecontextofbothtumornormalandtumoronlysequencing AT probabilisticmixturemodelsimprovecalibrationofpanelderivedtumormutationalburdeninthecontextofbothtumornormalandtumoronlysequencing |