Cargando…

Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study

Interpreting blood gas analysis results can be challenging for the clinician, especially in stressful situations under time pressure. To foster fast and correct interpretation of blood gas results, we developed Visual Blood. This computer-based, multicentre, noninferiority study compared Visual Bloo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergauer, Lisa, Akbas, Samira, Braun, Julia, Ganter, Michael T., Meybohm, Patrick, Hottenrott, Sebastian, Zacharowski, Kai, Raimann, Florian J., Rivas, Eva, López-Baamonde, Manuel, Spahn, Donat R., Noethiger, Christoph B., Tscholl, David W., Roche, Tadzio R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044755/
https://www.ncbi.nlm.nih.gov/pubmed/36978731
http://dx.doi.org/10.3390/bioengineering10030340
_version_ 1784913424139943936
author Bergauer, Lisa
Akbas, Samira
Braun, Julia
Ganter, Michael T.
Meybohm, Patrick
Hottenrott, Sebastian
Zacharowski, Kai
Raimann, Florian J.
Rivas, Eva
López-Baamonde, Manuel
Spahn, Donat R.
Noethiger, Christoph B.
Tscholl, David W.
Roche, Tadzio R.
author_facet Bergauer, Lisa
Akbas, Samira
Braun, Julia
Ganter, Michael T.
Meybohm, Patrick
Hottenrott, Sebastian
Zacharowski, Kai
Raimann, Florian J.
Rivas, Eva
López-Baamonde, Manuel
Spahn, Donat R.
Noethiger, Christoph B.
Tscholl, David W.
Roche, Tadzio R.
author_sort Bergauer, Lisa
collection PubMed
description Interpreting blood gas analysis results can be challenging for the clinician, especially in stressful situations under time pressure. To foster fast and correct interpretation of blood gas results, we developed Visual Blood. This computer-based, multicentre, noninferiority study compared Visual Blood and conventional arterial blood gas (ABG) printouts. We presented six scenarios to anaesthesiologists, once with Visual Blood and once with the conventional ABG printout. The primary outcome was ABG parameter perception. The secondary outcomes included correct clinical diagnoses, perceived diagnostic confidence, and perceived workload. To analyse the results, we used mixed models and matched odds ratios. Analysing 300 within-subject cases, we showed noninferiority of Visual Blood compared to ABG printouts concerning the rate of correctly perceived ABG parameters (rate ratio, 0.96; 95% CI, 0.92–1.00; p = 0.06). Additionally, the study revealed two times higher odds of making the correct clinical diagnosis using Visual Blood (OR, 2.16; 95% CI, 1.42–3.29; p < 0.001) than using ABG printouts. There was no or, respectively, weak evidence for a difference in diagnostic confidence (OR, 0.84; 95% CI, 0.58–1.21; p = 0.34) and perceived workload (Coefficient, 2.44; 95% CI, −0.09–4.98; p = 0.06). This study showed that participants did not perceive the ABG parameters better, but using Visual Blood resulted in more correct clinical diagnoses than using conventional ABG printouts. This suggests that Visual Blood allows for a higher level of situation awareness beyond individual parameters’ perception. However, the study also highlighted the limitations of today’s virtual reality headsets and Visual Blood.
format Online
Article
Text
id pubmed-10044755
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100447552023-03-29 Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study Bergauer, Lisa Akbas, Samira Braun, Julia Ganter, Michael T. Meybohm, Patrick Hottenrott, Sebastian Zacharowski, Kai Raimann, Florian J. Rivas, Eva López-Baamonde, Manuel Spahn, Donat R. Noethiger, Christoph B. Tscholl, David W. Roche, Tadzio R. Bioengineering (Basel) Article Interpreting blood gas analysis results can be challenging for the clinician, especially in stressful situations under time pressure. To foster fast and correct interpretation of blood gas results, we developed Visual Blood. This computer-based, multicentre, noninferiority study compared Visual Blood and conventional arterial blood gas (ABG) printouts. We presented six scenarios to anaesthesiologists, once with Visual Blood and once with the conventional ABG printout. The primary outcome was ABG parameter perception. The secondary outcomes included correct clinical diagnoses, perceived diagnostic confidence, and perceived workload. To analyse the results, we used mixed models and matched odds ratios. Analysing 300 within-subject cases, we showed noninferiority of Visual Blood compared to ABG printouts concerning the rate of correctly perceived ABG parameters (rate ratio, 0.96; 95% CI, 0.92–1.00; p = 0.06). Additionally, the study revealed two times higher odds of making the correct clinical diagnosis using Visual Blood (OR, 2.16; 95% CI, 1.42–3.29; p < 0.001) than using ABG printouts. There was no or, respectively, weak evidence for a difference in diagnostic confidence (OR, 0.84; 95% CI, 0.58–1.21; p = 0.34) and perceived workload (Coefficient, 2.44; 95% CI, −0.09–4.98; p = 0.06). This study showed that participants did not perceive the ABG parameters better, but using Visual Blood resulted in more correct clinical diagnoses than using conventional ABG printouts. This suggests that Visual Blood allows for a higher level of situation awareness beyond individual parameters’ perception. However, the study also highlighted the limitations of today’s virtual reality headsets and Visual Blood. MDPI 2023-03-08 /pmc/articles/PMC10044755/ /pubmed/36978731 http://dx.doi.org/10.3390/bioengineering10030340 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bergauer, Lisa
Akbas, Samira
Braun, Julia
Ganter, Michael T.
Meybohm, Patrick
Hottenrott, Sebastian
Zacharowski, Kai
Raimann, Florian J.
Rivas, Eva
López-Baamonde, Manuel
Spahn, Donat R.
Noethiger, Christoph B.
Tscholl, David W.
Roche, Tadzio R.
Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title_full Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title_fullStr Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title_full_unstemmed Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title_short Visual Blood, Visualisation of Blood Gas Analysis in Virtual Reality, Leads to More Correct Diagnoses: A Computer-Based, Multicentre, Simulation Study
title_sort visual blood, visualisation of blood gas analysis in virtual reality, leads to more correct diagnoses: a computer-based, multicentre, simulation study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044755/
https://www.ncbi.nlm.nih.gov/pubmed/36978731
http://dx.doi.org/10.3390/bioengineering10030340
work_keys_str_mv AT bergauerlisa visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT akbassamira visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT braunjulia visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT gantermichaelt visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT meybohmpatrick visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT hottenrottsebastian visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT zacharowskikai visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT raimannflorianj visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT rivaseva visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT lopezbaamondemanuel visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT spahndonatr visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT noethigerchristophb visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT tscholldavidw visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy
AT rochetadzior visualbloodvisualisationofbloodgasanalysisinvirtualrealityleadstomorecorrectdiagnosesacomputerbasedmulticentresimulationstudy