Cargando…
EDDSN-MRT: multiple rodent tracking based on ear detection and dual siamese network for rodent social behavior analysis
BACKGROUND: Rodent social behavior is a commonly used preclinical model to interrogate the mechanisms underpinning various human neurological conditions. To investigate the interplay between neural systems and social behaviors, neuroscientists need a precise quantitative measure for multi-rodent tra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044788/ https://www.ncbi.nlm.nih.gov/pubmed/36973649 http://dx.doi.org/10.1186/s12868-023-00787-3 |
Sumario: | BACKGROUND: Rodent social behavior is a commonly used preclinical model to interrogate the mechanisms underpinning various human neurological conditions. To investigate the interplay between neural systems and social behaviors, neuroscientists need a precise quantitative measure for multi-rodent tracking and behavior assessment in laboratory settings. However, identifying individual differences across multiple rodents due to visual occlusion precludes the generation of stable individual tracks across time. METHODS: To overcome the present limitations of multi-rodent tracking, we have developed an Ear Detection and Dual Siamese Network for Multiple Rodent Tracking (EDDSN-MRT). The aim of this study is to validate the EDDSN-MRT system in mice using a publicly available dataset and compare it with several current state-of-the-art methods for behavioral assessment. To demonstrate its application and effectiveness in the assessment of multi-rodent social behavior, we implemented an intermittent fasting intervention experiment on 4 groups of mice (each group is with different ages and fasting status and contains 8 individuals). We used the EDDSN-MRT system to track multiple mice simultaneously and for the identification and analysis of individual differences in rodent social behavior and compared our proposed method with Toxtrac and idtracker.ai. RESULTS: The locomotion behavior of up to 4 mice can be tracked simultaneously using the EDDSN-MRT system. Unexpectedly, we found intermittent fasting led to a decrease in the spatial distribution of the mice, contrasting with previous findings. Furthermore, we show that the EDDSN-MRT system can be used to analyze the social behavior of multiple mice of different ages and fasting status and provide data on locomotion behavior across multiple mice simultaneously. CONCLUSIONS: Compared with several state-of-the-art methods, the EDDSN-MRT system provided better tracking performance according to Multiple Object Tracking Accuracy (MOTA) and ID Correct Rate (ICR). External experimental validation suggests that the EDDSN-MRT system has sensitivity to distinguish the behaviors of mice on different intermittent fasting regimens. The EDDSN-MRT system code is freely available here: https://github.com/fliessen/EDDSN-MRT. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12868-023-00787-3. |
---|