Cargando…
Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network
In recent years, the development of adaptive models to tailor instructional content to learners by measuring their cognitive load has become a topic of active research. Brain fog, also known as confusion, is a common cause of poor performance, and real-time detection of confusion is a challenging an...
Autores principales: | Yoo, Gilsang, Kim, Hyeoncheol, Hong, Sungdae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044910/ https://www.ncbi.nlm.nih.gov/pubmed/36978752 http://dx.doi.org/10.3390/bioengineering10030361 |
Ejemplares similares
-
Vowel speech recognition from rat electroencephalography using long short-term memory neural network
por: Ham, Jinsil, et al.
Publicado: (2022) -
Speech Perception Improvement Algorithm Based on a Dual-Path Long Short-Term Memory Network
por: Koh, Hyeong Il, et al.
Publicado: (2023) -
Suspended sediment load prediction using long short-term memory neural network
por: AlDahoul, Nouar, et al.
Publicado: (2021) -
Application of bidirectional long short-term memory network for prediction of cognitive age
por: Wong, Shi-Bing, et al.
Publicado: (2023) -
Assessment of instantaneous cognitive load imposed by educational multimedia using electroencephalography signals
por: Sarailoo, Reza, et al.
Publicado: (2022)