Cargando…
Polypropylene Pelvic Mesh: What Went Wrong and What Will Be of the Future?
Background: Polypropylene (PP) pelvic mesh is a synthetic mesh made of PP polymer used to treat pelvic organ prolapse (POP). Its use has become highly controversial due to reports of serious complications. This research critically reviews the current management options for POP and PP mesh as a viabl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045074/ https://www.ncbi.nlm.nih.gov/pubmed/36979721 http://dx.doi.org/10.3390/biomedicines11030741 |
Sumario: | Background: Polypropylene (PP) pelvic mesh is a synthetic mesh made of PP polymer used to treat pelvic organ prolapse (POP). Its use has become highly controversial due to reports of serious complications. This research critically reviews the current management options for POP and PP mesh as a viable clinical application for the treatment of POP. The safety and suitability of PP material were rigorously studied and critically evaluated, with consideration to the mechanical and chemical properties of PP. We proposed the ideal properties of the ‘perfect’ synthetic pelvic mesh with emerging advanced materials. Methods: We performed a literature review using PubMed/Medline, Embase, Cochrane Library (Wiley) databases, and ClinicalTrials.gov databases, including the relevant keywords: pelvic organ prolapse (POP), polypropylene mesh, synthetic mesh, and mesh complications. Results: The results of this review found that although PP is nontoxic, its physical properties demonstrate a significant mismatch between its viscoelastic properties compared to the surrounding tissue, which is a likely cause of complications. In addition, a lack of integration of PP mesh into surrounding tissue over longer periods of follow up is another risk factor for irreversible complications. Conclusions: PP mesh has caused a rise in reports of complications involving chronic pain and mesh exposure. This is due to the mechanical and physicochemical properties of PP mesh. As a result, PP mesh for the treatment of POP has been banned in multiple countries, currently with no alternative available. We propose the development of a pelvic mesh using advanced materials including emerging graphene-based nanocomposite materials. |
---|