Cargando…
Using Attribution Sequence Alignment to Interpret Deep Learning Models for miRNA Binding Site Prediction
SIMPLE SUMMARY: MicroRNAs are small non-coding RNAs that play a central role in many molecular processes, but the exact rules of their activity are not known. In recent years, deep learning computational methods have revolutionized many fields, including the microRNA field. While making accurate pre...
Autores principales: | Grešová, Katarína, Vaculík, Ondřej, Alexiou, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045089/ https://www.ncbi.nlm.nih.gov/pubmed/36979061 http://dx.doi.org/10.3390/biology12030369 |
Ejemplares similares
-
Transfer Learning Allows Accurate RBP Target Site Prediction with Limited Sample Sizes
por: Vaculík, Ondřej, et al.
Publicado: (2023) -
miRBind: A Deep Learning Method for miRNA Binding Classification
por: Klimentová, Eva, et al.
Publicado: (2022) -
Genomic benchmarks: a collection of datasets for genomic sequence classification
por: Grešová, Katarína, et al.
Publicado: (2023) -
Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling
por: Grešová, Katarína, et al.
Publicado: (2022) -
ENNGene: an Easy Neural Network model building tool for Genomics
por: Chalupová, Eliška, et al.
Publicado: (2022)