Cargando…

Genome-wide identification of RNA modification-related single nucleotide polymorphisms associated with rheumatoid arthritis

BACKGROUND: RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants. METHODS: We e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mimi, Wu, Jingyun, Lei, Shufeng, Mo, Xingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045113/
https://www.ncbi.nlm.nih.gov/pubmed/36973646
http://dx.doi.org/10.1186/s12864-023-09227-2
Descripción
Sumario:BACKGROUND: RNA modification plays important roles in many biological processes, such as gene expression control. The aim of this study was to identify single nucleotide polymorphisms related to RNA modification (RNAm-SNPs) for rheumatoid arthritis (RA) as putative functional variants. METHODS: We examined the association of RNAm-SNPs with RA in summary data from a genome-wide association study of 19,234 RA cases and 61,565 controls. We performed eQTL and pQTL analyses for the RNAm-SNPs to find associated gene expression and protein levels. Furthermore, we examined the associations of gene expression and circulating protein levels with RA using two-sample Mendelian randomization analysis methods. RESULTS: A total of 160 RNAm-SNPs related to m(6)A, m(1)A, A-to-I, m(7)G, m(5)C, m(5)U and m(6)Am modifications were identified to be significantly associated with RA. These RNAm-SNPs were located in 62 protein-coding genes, which were significantly enriched in immune-related pathways. RNAm-SNPs in important RA susceptibility genes, such as PADI2, SPRED2, PLCL2, HLA-A, HLA-B, HLA-DRB1, HLA-DPB1, TRAF1 and TXNDC11, were identified. Most of these RNAm-SNPs showed eQTL effects, and the expression levels of 26 of the modifiable genes (e.g., PADI2, TRAF1, HLA-A, HLA-DRB1, HLA-DPB1 and HLA-B) in blood cells were associated with RA. Circulating protein levels, such as CFB, GZMA, HLA-DQA2, IL21, LRPAP1 and TFF3, were affected by RNAm-SNPs and were associated with RA. CONCLUSION: The present study identified RNAm-SNPs in the reported RA susceptibility genes and suggested that RNAm-SNPs may affect RA risk by affecting the expression levels of corresponding genes and proteins. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09227-2.