Cargando…

Muscle and Muscle-like Autoantigen Expression in Myasthenia Gravis Thymus: Possible Molecular Hint for Autosensitization

The thymus is widely recognized as an immunological niche where autoimmunity against the acetylcholine receptor (AChR) develops in myasthenia gravis (MG) patients, who mostly present thymic hyperplasia and thymoma. Thymoma-associated MG is frequently characterized by autoantibodies to the muscular r...

Descripción completa

Detalles Bibliográficos
Autores principales: Iacomino, Nicola, Scandiffio, Letizia, Conforti, Fabio, Salvi, Erika, Tarasco, Maria Cristina, Bortone, Federica, Marcuzzo, Stefania, Simoncini, Ornella, Andreetta, Francesca, Pistillo, Daniela, Voulaz, Emanuele, Alloisio, Marco, Antozzi, Carlo, Mantegazza, Renato, De Pas, Tommaso Martino, Cavalcante, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045167/
https://www.ncbi.nlm.nih.gov/pubmed/36979710
http://dx.doi.org/10.3390/biomedicines11030732
Descripción
Sumario:The thymus is widely recognized as an immunological niche where autoimmunity against the acetylcholine receptor (AChR) develops in myasthenia gravis (MG) patients, who mostly present thymic hyperplasia and thymoma. Thymoma-associated MG is frequently characterized by autoantibodies to the muscular ryanodine receptor 1 (RYR1) and titin (TTN), along with anti-AChR antibodies. By real-time PCR, we analyzed muscle—CHRNA1, RYR1, and TTN—and muscle-like—NEFM, RYR3 and HSP60—autoantigen gene expression in MG thymuses with hyperplasia and thymoma, normal thymuses and non-MG thymomas, to check for molecular changes potentially leading to an altered antigen presentation and autoreactivity. We found that CHRNA1 (AChR-α subunit) and AIRE (autoimmune regulator) genes were expressed at lower levels in hyperplastic and thymoma MG compared to the control thymuses, and that the RYR1 and TTN levels were decreased in MG versus the non-MG thymomas. Genes encoding autoantigens that share epitopes with AChR-α (NEFM and HSP60), RYR1 (neuronal RYR3), and TTN (NEFM) were up-regulated in thymomas versus hyperplastic and control thymuses, with distinct molecular patterns across the thymoma histotypes that could be relevant for autoimmunity development. Our findings support the idea that altered muscle autoantigen expression, related with hyperplastic and neoplastic changes, may favor autosensitization in the MG thymus, and that molecular mimicry involving tumor-related muscle-like proteins may be a mechanism that makes thymoma prone to developing MG.