Cargando…

Limiting the Use of Electromyography and Ground Reaction Force Data Changes the Magnitude and Ranking of Modelled Anterior Cruciate Ligament Forces

Neuromusculoskeletal models often require three-dimensional (3D) body motions, ground reaction forces (GRF), and electromyography (EMG) as input data. Acquiring these data in real-world settings is challenging, with barriers such as the cost of instruments, setup time, and operator skills to correct...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasseri, Azadeh, Akhundov, Riad, Bryant, Adam L., Lloyd, David G., Saxby, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045248/
https://www.ncbi.nlm.nih.gov/pubmed/36978760
http://dx.doi.org/10.3390/bioengineering10030369
Descripción
Sumario:Neuromusculoskeletal models often require three-dimensional (3D) body motions, ground reaction forces (GRF), and electromyography (EMG) as input data. Acquiring these data in real-world settings is challenging, with barriers such as the cost of instruments, setup time, and operator skills to correctly acquire and interpret data. This study investigated the consequences of limiting EMG and GRF data on modelled anterior cruciate ligament (ACL) forces during a drop–land–jump task in late-/post-pubertal females. We compared ACL forces generated by a reference model (i.e., EMG-informed neural mode combined with 3D GRF) to those generated by an EMG-informed with only vertical GRF, static optimisation with 3D GRF, and static optimisation with only vertical GRF. Results indicated ACL force magnitude during landing (when ACL injury typically occurs) was significantly overestimated if only vertical GRF were used for either EMG-informed or static optimisation neural modes. If 3D GRF were used in combination with static optimisation, ACL force was marginally overestimated compared to the reference model. None of the alternative models maintained rank order of ACL loading magnitudes generated by the reference model. Finally, we observed substantial variability across the study sample in response to limiting EMG and GRF data, indicating need for methods incorporating subject-specific measures of muscle activation patterns and external loading when modelling ACL loading during dynamic motor tasks.