Cargando…

Organelle-Targeted Fluorescent Probes for Sulfane Sulfur Species

Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H(2)S(n), n > 1), and polysulfides (RS(n)R, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H(2)S) signaling. While most studies on sulfane sulfur detection have fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Biswajit, Shieh, Meg, Ramush, Geat, Xian, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045342/
https://www.ncbi.nlm.nih.gov/pubmed/36978838
http://dx.doi.org/10.3390/antiox12030590
Descripción
Sumario:Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H(2)S(n), n > 1), and polysulfides (RS(n)R, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H(2)S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged. This has driven a need for organelle-targeted detection methods. However, the detection of sulfane sulfurs, particularly of RSSH and H(2)S(n), in biological systems is still a challenge due to their low endogenous concentrations and instabilities. In this review, we summarize the development and design of organelle-targeted fluorescent sulfane sulfur probes, examine their organelle-targeting strategies and choices of fluorophores (e.g., ratiometric, near-infrared, etc.), and discuss their mechanisms and ability to detect endogenous and exogenous sulfane sulfur species. We also present the advantages and limitations of the probes and propose directions for future work on this topic.