Cargando…
The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis
The epigenetic regulation of gene expression is a complex and tightly regulated process that defines cellular identity and is associated with health and disease processes. Oxidative stress is capable of inducing epigenetic modifications. The transcription factor NRF2 (nuclear factor erythroid-derive...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045347/ https://www.ncbi.nlm.nih.gov/pubmed/36978889 http://dx.doi.org/10.3390/antiox12030641 |
_version_ | 1784913581262766080 |
---|---|
author | Silva-Llanes, Ignacio Shin, Chang Hoon Jiménez-Villegas, José Gorospe, Myriam Lastres-Becker, Isabel |
author_facet | Silva-Llanes, Ignacio Shin, Chang Hoon Jiménez-Villegas, José Gorospe, Myriam Lastres-Becker, Isabel |
author_sort | Silva-Llanes, Ignacio |
collection | PubMed |
description | The epigenetic regulation of gene expression is a complex and tightly regulated process that defines cellular identity and is associated with health and disease processes. Oxidative stress is capable of inducing epigenetic modifications. The transcription factor NRF2 (nuclear factor erythroid-derived 2-like 2) is a master regulator of cellular homeostasis, regulating genes bearing antioxidant response elements (AREs) in their promoters. Here, we report the identification of ARE sequences in the promoter regions of genes encoding several epigenetic regulatory factors, such as histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and proteins involved in microRNA biogenesis. In this research, we study this possibility by integrating bioinformatic, genetic, pharmacological, and molecular approaches. We found ARE sequences in the promoter regions of genes encoding several HDACs, DNMTs, and proteins involved in miRNA biogenesis. We confirmed that NRF2 regulates the production of these genes by studying NRF2-deficient cells and cells treated with dimethyl fumarate (DMF), an inducer of the NRF2 signaling pathway. In addition, we found that NRF2 could be involved in the target RNA-dependent microRNA degradation (TDMD) of miR-155-5p through its interaction with Nfe2l2 mRNA. Our data indicate that NRF2 has an epigenetic regulatory function, complementing its traditional function and expanding the regulatory dimensions that should be considered when developing NRF2-centered therapeutic strategies. |
format | Online Article Text |
id | pubmed-10045347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100453472023-03-29 The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis Silva-Llanes, Ignacio Shin, Chang Hoon Jiménez-Villegas, José Gorospe, Myriam Lastres-Becker, Isabel Antioxidants (Basel) Article The epigenetic regulation of gene expression is a complex and tightly regulated process that defines cellular identity and is associated with health and disease processes. Oxidative stress is capable of inducing epigenetic modifications. The transcription factor NRF2 (nuclear factor erythroid-derived 2-like 2) is a master regulator of cellular homeostasis, regulating genes bearing antioxidant response elements (AREs) in their promoters. Here, we report the identification of ARE sequences in the promoter regions of genes encoding several epigenetic regulatory factors, such as histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and proteins involved in microRNA biogenesis. In this research, we study this possibility by integrating bioinformatic, genetic, pharmacological, and molecular approaches. We found ARE sequences in the promoter regions of genes encoding several HDACs, DNMTs, and proteins involved in miRNA biogenesis. We confirmed that NRF2 regulates the production of these genes by studying NRF2-deficient cells and cells treated with dimethyl fumarate (DMF), an inducer of the NRF2 signaling pathway. In addition, we found that NRF2 could be involved in the target RNA-dependent microRNA degradation (TDMD) of miR-155-5p through its interaction with Nfe2l2 mRNA. Our data indicate that NRF2 has an epigenetic regulatory function, complementing its traditional function and expanding the regulatory dimensions that should be considered when developing NRF2-centered therapeutic strategies. MDPI 2023-03-04 /pmc/articles/PMC10045347/ /pubmed/36978889 http://dx.doi.org/10.3390/antiox12030641 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Silva-Llanes, Ignacio Shin, Chang Hoon Jiménez-Villegas, José Gorospe, Myriam Lastres-Becker, Isabel The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title | The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title_full | The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title_fullStr | The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title_full_unstemmed | The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title_short | The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis |
title_sort | transcription factor nrf2 has epigenetic regulatory functions modulating hdacs, dnmts, and mirna biogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045347/ https://www.ncbi.nlm.nih.gov/pubmed/36978889 http://dx.doi.org/10.3390/antiox12030641 |
work_keys_str_mv | AT silvallanesignacio thetranscriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT shinchanghoon thetranscriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT jimenezvillegasjose thetranscriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT gorospemyriam thetranscriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT lastresbeckerisabel thetranscriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT silvallanesignacio transcriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT shinchanghoon transcriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT jimenezvillegasjose transcriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT gorospemyriam transcriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis AT lastresbeckerisabel transcriptionfactornrf2hasepigeneticregulatoryfunctionsmodulatinghdacsdnmtsandmirnabiogenesis |