Cargando…

GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification

Nuclei segmentation and classification are two basic and essential tasks in computer-aided diagnosis of digital pathology images, and those deep-learning-based methods have achieved significant success. Unfortunately, most of the existing studies accomplish the two tasks by splicing two related neur...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Tengfei, Fu, Chong, Tian, Yunjia, Song, Wei, Sham, Chiu-Wing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045412/
https://www.ncbi.nlm.nih.gov/pubmed/36978784
http://dx.doi.org/10.3390/bioengineering10030393
Descripción
Sumario:Nuclei segmentation and classification are two basic and essential tasks in computer-aided diagnosis of digital pathology images, and those deep-learning-based methods have achieved significant success. Unfortunately, most of the existing studies accomplish the two tasks by splicing two related neural networks directly, resulting in repetitive computation efforts and a redundant-and-large neural network. Thus, this paper proposes a lightweight deep learning framework (GSN-HVNET) with an encoder–decoder structure for simultaneous segmentation and classification of nuclei. The decoder consists of three branches outputting the semantic segmentation of nuclei, the horizontal and vertical (HV) distances of nuclei pixels to their mass centers, and the class of each nucleus, respectively. The instance segmentation results are obtained by combing the outputs of the first and second branches. To reduce the computational cost and improve the network stability under small batch sizes, we propose two newly designed blocks, Residual-Ghost-SN (RGS) and Dense-Ghost-SN (DGS). Furthermore, considering the practical usage in pathological diagnosis, we redefine the classification principle of the CoNSeP dataset. Experimental results demonstrate that the proposed model outperforms other state-of-the-art models in terms of segmentation and classification accuracy by a significant margin while maintaining high computational efficiency.