Cargando…
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
Nuclei segmentation and classification are two basic and essential tasks in computer-aided diagnosis of digital pathology images, and those deep-learning-based methods have achieved significant success. Unfortunately, most of the existing studies accomplish the two tasks by splicing two related neur...
Autores principales: | Zhao, Tengfei, Fu, Chong, Tian, Yunjia, Song, Wei, Sham, Chiu-Wing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045412/ https://www.ncbi.nlm.nih.gov/pubmed/36978784 http://dx.doi.org/10.3390/bioengineering10030393 |
Ejemplares similares
-
RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images
por: Zhao, Tengfei, et al.
Publicado: (2023) -
GSN Optical: How to solve the problem
por: Van Praag, A
Publicado: (2000) -
GSN gene frameshift mutations in Alzheimer’s disease
por: Jiang, Yaling, et al.
Publicado: (2023) -
Coupling GSN to SONET-OC48/SDH16
por: Van Praag, A, et al.
Publicado: (2001) -
The Significance of 8-oxoGsn in Aging-Related Diseases
por: Zhang, Xinmu, et al.
Publicado: (2020)