Cargando…
Challenges in Forecasting Antimicrobial Resistance
Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective...
Autores principales: | Pei, Sen, Blumberg, Seth, Vega, Jaime Cascante, Robin, Tal, Zhang, Yue, Medford, Richard J., Adhikari, Bijaya, Shaman, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045679/ https://www.ncbi.nlm.nih.gov/pubmed/36958029 http://dx.doi.org/10.3201/eid2904.221552 |
Ejemplares similares
-
Inference of transmission dynamics and retrospective forecast of invasive meningococcal disease
por: Cascante-Vega, Jaime, et al.
Publicado: (2023) -
Challenges in Forecasting Antimicrobial Resistance (Response)
por: Pei, Sen
Publicado: (2023) -
Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness
por: Pei, Sen, et al.
Publicado: (2020) -
Counteracting structural errors in ensemble forecast of influenza outbreaks
por: Pei, Sen, et al.
Publicado: (2017) -
Challenges in Forecasting Antimicrobial Resistance
por: Aldeyab, Mamoon A., et al.
Publicado: (2023)