Cargando…

Dynamic changes in marker components during the stir-frying of Pharbitidis Semen, and network analysis of its potential effects on nephritis

Introduction: Pharbitidis Semen (PS) has been widely used in traditional Chinese medicine to treat several diseases such as nephritis. PS is usually stir-fried to enhance its therapeutic efficacy before use in clinical practice. However, the changes in phenolic acids during stir-frying and the mecha...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuman, Lu, Yuhe, Zhu, Yujie, Yao, Jingchun, Hua, Haibing, Shen, Jinyang, Gao, Xun, Qin, Kunming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045986/
https://www.ncbi.nlm.nih.gov/pubmed/36998608
http://dx.doi.org/10.3389/fphar.2023.1123476
Descripción
Sumario:Introduction: Pharbitidis Semen (PS) has been widely used in traditional Chinese medicine to treat several diseases such as nephritis. PS is usually stir-fried to enhance its therapeutic efficacy before use in clinical practice. However, the changes in phenolic acids during stir-frying and the mechanisms of their therapeutic effects on nephritis are still unclear. Methods: Here, we studied the processing-induced chemical changes and elucidated the mechanism of PS in the treatment of nephritis. We determined the levels of the 7 phenolic acids in raw PS (RPS) and stir-fried PS (SPS) using high-performance liquid chromatography, analyzed the dynamic compositional changes during stir-frying, and used network analysis and molecular docking to predict and verify compound targets and pathways corresponding to nephritis. Results: The dynamic changes in the 7 phenolic acids in PS during stir-frying are suggestive of a transesterification reaction. Pathway analysis revealed that the targets of nephritis were mainly enriched in the AGE-RAGE, hypoxia-inducible factor-1, interleukin-17, and tumor necrosis factor signaling pathways among others. Molecular docking results showed that the 7 phenolic acids had good binding ability with the key nephritic targets. Discussion: The potential pharmaceutical basis, targets, and mechanisms of PS in treating nephritis were explored. Our findings provide a scientific basis for the clinical use of PS in treating nephritis.