Cargando…

In Silico Screening and Optimization of Cell-Penetrating Peptides Using Deep Learning Methods

Cell-penetrating peptides (CPPs) have great potential to deliver bioactive agents into cells. Although there have been many recent advances in CPP-related research, it is still important to develop more efficient CPPs. The development of CPPs by in silico methods is a very useful addition to experim...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Hyejin, Park, Jung-Hyun, Kim, Min Seok, Cho, Kwangmin, Shin, Jae-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046020/
https://www.ncbi.nlm.nih.gov/pubmed/36979457
http://dx.doi.org/10.3390/biom13030522
Descripción
Sumario:Cell-penetrating peptides (CPPs) have great potential to deliver bioactive agents into cells. Although there have been many recent advances in CPP-related research, it is still important to develop more efficient CPPs. The development of CPPs by in silico methods is a very useful addition to experimental methods, but in many cases it can lead to a large number of false-positive results. In this study, we developed a deep-learning-based CPP prediction method, AiCPP, to develop novel CPPs. AiCPP uses a large number of peptide sequences derived from human-reference proteins as a negative set to reduce false-positive predictions and adopts a method to learn small-length peptide sequence motifs that may have CPP tendencies. Using AiCPP, we found that short peptide sequences derived from amyloid precursor proteins are efficient new CPPs, and experimentally confirmed that these CPP sequences can be further optimized.