Cargando…
In Silico Screening and Optimization of Cell-Penetrating Peptides Using Deep Learning Methods
Cell-penetrating peptides (CPPs) have great potential to deliver bioactive agents into cells. Although there have been many recent advances in CPP-related research, it is still important to develop more efficient CPPs. The development of CPPs by in silico methods is a very useful addition to experim...
Autores principales: | Park, Hyejin, Park, Jung-Hyun, Kim, Min Seok, Cho, Kwangmin, Shin, Jae-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046020/ https://www.ncbi.nlm.nih.gov/pubmed/36979457 http://dx.doi.org/10.3390/biom13030522 |
Ejemplares similares
-
Deep Learning Analysis to Automatically Detect the Presence of Penetration or Aspiration in Videofluoroscopic Swallowing Study
por: Kim, Jeoung Kun, et al.
Publicado: (2022) -
In silico approaches for designing highly effective cell penetrating peptides
por: Gautam, Ankur, et al.
Publicado: (2013) -
Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature
por: Chang, Yoosup, et al.
Publicado: (2018) -
Deep-learning model for screening sepsis using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2021) -
AiKPro: deep learning model for kinome-wide bioactivity profiling using structure-based sequence alignments and molecular 3D conformer ensemble descriptors
por: Park, Hyejin, et al.
Publicado: (2023)