Cargando…
Gene Self-Expressive Networks as a Generalization-Aware Tool to Model Gene Regulatory Networks
Self-expressiveness is a mathematical property that aims at characterizing the relationship between instances in a dataset. This property has been applied widely and successfully in computer-vision tasks, time-series analysis, and to infer underlying network structures in domains including protein s...
Autores principales: | Peignier, Sergio, Calevro, Federica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046116/ https://www.ncbi.nlm.nih.gov/pubmed/36979461 http://dx.doi.org/10.3390/biom13030526 |
Ejemplares similares
-
GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data
por: Schmitt, Pauline, et al.
Publicado: (2023) -
Chromatin interaction–aware gene regulatory modeling with graph attention networks
por: Karbalayghareh, Alireza, et al.
Publicado: (2022) -
Theoretical and computational tools to model multistable gene regulatory
networks
por: Bocci, Federico, et al.
Publicado: (2023) -
Extensive evaluation of the generalized relevance network approach to inferring gene regulatory networks
por: Kuzmanovski, Vladimir, et al.
Publicado: (2018) -
A Web Tool for Consensus Gene Regulatory Network Construction
por: Sarkar, Chiranjib, et al.
Publicado: (2021)