Cargando…

A Novel Method in Identifying Pyroptosis and Apoptosis Based on the Double Resonator Piezoelectric Cytometry Technology

In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells’ mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenwei, Li, Jing, Wu, Yanyang, Zhou, Tiean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046136/
https://www.ncbi.nlm.nih.gov/pubmed/36979568
http://dx.doi.org/10.3390/bios13030356
Descripción
Sumario:In this study, a double resonator piezoelectric cytometry (DRPC) technology based on quartz crystal microbalance (QCM) was first employed to identify HeLa cell pyroptosis and apoptosis by monitoring cells’ mechanical properties in a real-time and non-invasive manner. AT and BT cut quartz crystals with the same frequency and surface conditions were used concurrently to quantify the cells-exerted surface stress (ΔS). It is the first time that cells-exerted surface stress (ΔS) and cell viscoelasticity have been monitored simultaneously during pyroptosis and apoptosis. The results showed that HeLa pyroptotic cells exerted a tensile stress on quartz crystal along with an increase in the elastic modulus (G′), viscous modulus (G″), and a decrease of the loss tangent (G″/G′), whereas apoptotic cells exerted increasing compressive stress on quartz crystal along with a decrease in G′, G″ and an increase in G″/G′. Furthermore, engineered GSDMD(−/−)-DEVD- HeLa cells were used to investigate drug-induced disturbance and testify the mechanical responses during the processes of pyroptosis and non-pyroptosis. These findings demonstrated that the DRPC technology can serve as a precise cytomechanical sensor capable of identifying pyroptosis and apoptosis, providing a novel method in cell death detection and paving the road for pyroptosis and apoptosis related drug evaluation and screening.