Cargando…
Locomotion Outcome Improvement in Mice with Glioblastoma Multiforme after Treatment with Anastrozole
Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (verti...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046174/ https://www.ncbi.nlm.nih.gov/pubmed/36979306 http://dx.doi.org/10.3390/brainsci13030496 |
Sumario: | Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee. We analyzed the steps dissimilarity factor between control and GBM mice with and without anastrozole. The body weight of the untreated animals decreased compared to treated mice. Anastrozole reduced the malignant cells and decreased GPR30 and ERα receptor expression. In addition, we observed a partial recovery in metatarsus and knee joint displacement (dissimilarity factor). The vertical axis displacement of the GBM+anastrozole group showed a difference in the right metatarsus, right knee, and left ankle compared to the GBM group. In the horizontal axis displacement of the right metatarsus, ankle, and knee, the GBM+anastrozole group exhibited a difference at the last third of the step cycle compared to the GBM group. Thus, anastrozole partially modified joint displacement. The dissimilarity factor and the vertical and horizontal displacements study will be of interest in GBM patients with locomotion alterations. Hindlimb displacement and gait locomotion analysis could be a valuable methodological tool in experimental and clinical studies to help diagnose locomotive deficits related to GBM. |
---|