Cargando…
Combining CNN Features with Voting Classifiers for Optimizing Performance of Brain Tumor Classification
SIMPLE SUMMARY: This study presents a hybrid model for brain tumor detection. Contrary to manual featur extraction, features extracted from a convolutional neural network are used to train the model. Experimental results show the efficacy of CNN features over manually extracted features and model ca...
Autores principales: | Alturki, Nazik, Umer, Muhammad, Ishaq, Abid, Abuzinadah, Nihal, Alnowaiser, Khaled, Mohamed, Abdullah, Saidani, Oumaima, Ashraf, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046217/ https://www.ncbi.nlm.nih.gov/pubmed/36980653 http://dx.doi.org/10.3390/cancers15061767 |
Ejemplares similares
-
Monitoring Acute Heart Failure Patients Using Internet-of-Things-Based Smart Monitoring System
por: Almujally, Nouf Abdullah, et al.
Publicado: (2023) -
An Intelligent Framework for Cyber–Physical Satellite System and IoT-Aided Aerial Vehicle Security Threat Detection
por: Alturki, Nazik, et al.
Publicado: (2023) -
Enhancing Prediction of Brain Tumor Classification Using Images and Numerical Data Features
por: Saidani, Oumaima, et al.
Publicado: (2023) -
Incorporating CNN Features for Optimizing Performance of Ensemble Classifier for Cardiovascular Disease Prediction
por: Rustam, Furqan, et al.
Publicado: (2022) -
Fake news stance detection using selective features and FakeNET
por: Aljrees, Turki, et al.
Publicado: (2023)