Cargando…
Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes
Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046239/ https://www.ncbi.nlm.nih.gov/pubmed/36979960 http://dx.doi.org/10.3390/biomedicines11030981 |
_version_ | 1785013622301261824 |
---|---|
author | Azarova, Iuliia Klyosova, Elena Polonikov, Alexey |
author_facet | Azarova, Iuliia Klyosova, Elena Polonikov, Alexey |
author_sort | Azarova, Iuliia |
collection | PubMed |
description | Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study’s findings demonstrate, for the first time, that the RAC1 gene’s polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications. |
format | Online Article Text |
id | pubmed-10046239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100462392023-03-29 Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes Azarova, Iuliia Klyosova, Elena Polonikov, Alexey Biomedicines Article Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study’s findings demonstrate, for the first time, that the RAC1 gene’s polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications. MDPI 2023-03-22 /pmc/articles/PMC10046239/ /pubmed/36979960 http://dx.doi.org/10.3390/biomedicines11030981 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Azarova, Iuliia Klyosova, Elena Polonikov, Alexey Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title | Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title_full | Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title_fullStr | Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title_full_unstemmed | Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title_short | Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes |
title_sort | single nucleotide polymorphisms of the rac1 gene as novel susceptibility markers for neuropathy and microvascular complications in type 2 diabetes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046239/ https://www.ncbi.nlm.nih.gov/pubmed/36979960 http://dx.doi.org/10.3390/biomedicines11030981 |
work_keys_str_mv | AT azarovaiuliia singlenucleotidepolymorphismsoftherac1geneasnovelsusceptibilitymarkersforneuropathyandmicrovascularcomplicationsintype2diabetes AT klyosovaelena singlenucleotidepolymorphismsoftherac1geneasnovelsusceptibilitymarkersforneuropathyandmicrovascularcomplicationsintype2diabetes AT polonikovalexey singlenucleotidepolymorphismsoftherac1geneasnovelsusceptibilitymarkersforneuropathyandmicrovascularcomplicationsintype2diabetes |