Cargando…
FBA-PRCC. Partial Rank Correlation Coefficient (PRCC) Global Sensitivity Analysis (GSA) in Application to Constraint-Based Models
Background: Whole-genome models (GEMs) have become a versatile tool for systems biology, biotechnology, and medicine. GEMs created by automatic and semi-automatic approaches contain a lot of redundant reactions. At the same time, the nonlinearity of the model makes it difficult to evaluate the signi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046323/ https://www.ncbi.nlm.nih.gov/pubmed/36979435 http://dx.doi.org/10.3390/biom13030500 |
Sumario: | Background: Whole-genome models (GEMs) have become a versatile tool for systems biology, biotechnology, and medicine. GEMs created by automatic and semi-automatic approaches contain a lot of redundant reactions. At the same time, the nonlinearity of the model makes it difficult to evaluate the significance of the reaction for cell growth or metabolite production. Methods: We propose a new way to apply the global sensitivity analysis (GSA) to GEMs in a straightforward parallelizable fashion. Results: We have shown that Partial Rank Correlation Coefficient (PRCC) captures key steps in the metabolic network despite the network distance from the product synthesis reaction. Conclusions: FBA-PRCC is a fast, interpretable, and reliable metric to identify the sign and magnitude of the reaction contribution to various cellular functions. |
---|