Cargando…

Targeted and Suspect Fatty Acid Profiling of Royal Jelly by Liquid Chromatography—High Resolution Mass Spectrometry

Royal jelly (RJ) is a bee product produced by the mandibular and hypopharyngeal glands of worker honeybees which has attracted special attention because of its numerous pharmacological activities and its applications to dermatology and cosmetics. In 2020, we demonstrated a liquid chromatography–high...

Descripción completa

Detalles Bibliográficos
Autores principales: Mantzourani, Christiana, Kokotou, Maroula G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046394/
https://www.ncbi.nlm.nih.gov/pubmed/36979357
http://dx.doi.org/10.3390/biom13030424
Descripción
Sumario:Royal jelly (RJ) is a bee product produced by the mandibular and hypopharyngeal glands of worker honeybees which has attracted special attention because of its numerous pharmacological activities and its applications to dermatology and cosmetics. In 2020, we demonstrated a liquid chromatography–high resolution mass spectrometry (LC–HRMS) method for the determination of seven medium-chain FFAs in RJ samples. The aim of the present work was to extend our studies on FA profiling of RJ, exploring the presence of common long-chain saturated, mono-unsaturated and poly-unsaturated free FAs in RJ samples using this LC–HRMS method. Among twenty common FAs studied by a targeted approach, palmitic acid, stearic acid and oleic acid were found at concentrations higher than the rest of the FAs (the concentrations of these three acids ranged from 37.4 to 48.0, from 17.7 to 24.0 and from 9.4 to 11.1 mg/100 g of fresh RJ, respectively). The high mass accuracy of LC–HRMS allowed the application of a suspect approach, which enabled the exploration of various C9 and C11 FAs, as well as hydroxylated C12 FAs. Nonenoic acid was indicated as the most abundant among these acids. In addition, for the first time, the presence of a variety of regio-isomers of hydroxymyristic, hydroxypalmitic and hydroxystearic acids was demonstrated in RJ samples.