Cargando…

TNFR2 as a Potential Biomarker for Early Detection and Progression of CKD

The inflammatory pathway driven by TNF-α, through its receptors TNFR1 and TNFR2, is a common feature in the pathogenesis of chronic kidney disease (CKD), regardless of the initial disease cause. Evidence correlates the chronic inflammatory status with decreased renal function. Our aim was to evaluat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lousa, Irina, Reis, Flávio, Viana, Sofia, Vieira, Pedro, Vala, Helena, Belo, Luís, Santos-Silva, Alice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046457/
https://www.ncbi.nlm.nih.gov/pubmed/36979469
http://dx.doi.org/10.3390/biom13030534
Descripción
Sumario:The inflammatory pathway driven by TNF-α, through its receptors TNFR1 and TNFR2, is a common feature in the pathogenesis of chronic kidney disease (CKD), regardless of the initial disease cause. Evidence correlates the chronic inflammatory status with decreased renal function. Our aim was to evaluate the potential of TNF receptors as biomarkers for CKD diagnosis and staging, as well as their association with the progression of renal lesions, in rat models of early and moderate CKD. We analyzed the circulating levels of inflammatory molecules—tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1) and 2 (TNFR2) and tissue inhibitor of metalloproteinase-1 (TIMP-1)—and studied their associations with TNFR1 and TNFR2 renal expression, glomerular and tubulointerstitial lesions, and with biomarkers of renal (dys)function. An increase in all inflammatory markers was observed in moderate CKD, as compared to controls, but only circulating levels of both TNFR1 and TNFR2 were significantly increased in the early disease; TNFR2 serum levels were negatively correlated with eGFR. However, only TNFR2 renal expression increased with CKD severity and showed correlations with the score of mild and advanced tubular lesions. Our findings suggest that renal TNFR2 plays a role in CKD development, and has potential to be used as a biomarker for the early detection and progression of the disease. Still, the potential value of this biomarker in disease progression warrants further investigation.